piezoelectric resonator, a crystal, as its frequency-determining element

A crystal oscillator is an electric oscillator type circuit that uses a piezoelectric resonator, a crystal, as its frequency-determining element. Crystal is the common term used in electronics for the frequency-determining component, a wafer of quartz crystal or ceramic with electrodes connected to it. A more accurate term for it is piezoelectric resonator. Crystals are also used in other types of electronic circuits, such as crystal filters.

Piezoelectric resonators are sold as separate components for use in crystal oscillator circuits. They are also often incorporated in a single package with the crystal oscillator circuit.

History[edit]

100 kHz crystal oscillators at the US National Bureau of Standards that served as the frequency standard for the United States in 1929
Very early Bell Labs crystals from Vectron International Collection

Piezoelectricity was discovered by Jacques and Pierre Curie in 1880. Paul Langevin first investigated quartz resonators for use in sonar during World War I. The first crystal-controlled oscillator, using a crystal of Rochelle salt, was built in 1917 and patented[6] in 1918 by Alexander M. Nicholson at Bell Telephone Laboratories, although his priority was disputed by Walter Guyton Cady.[7] Cady built the first quartz crystal oscillator in 1921.[8] Other early innovators in quartz crystal oscillators include G. W. Pierce and Louis Essen.

Quartz crystal oscillators were developed for high-stability frequency references during the 1920s and 1930s. Prior to crystals, radio stations controlled their frequency with tuned circuits, which could easily drift off frequency by 3–4 kHz.[9] Since broadcast stations were assigned frequencies only 10 kHz (Americas) or 9 kHz (elsewhere) apart, interference between adjacent stations due to frequency drift was a common problem.[9] In 1925, Westinghouse installed a crystal oscillator in its flagship station KDKA,[9] and by 1926, quartz crystals were used to control the frequency of many broadcasting stations and were popular with amateur radio operators.[10] In 1928, Warren Marrison of Bell Telephone Laboratories developed the first quartz-crystal clock. With accuracies of up to 1 second in 30 years (30 ms/y, or 0.95 ns/s),[8] quartz clocks replaced precision pendulum clocks as the world's most accurate timekeepers until atomic clocks were developed in the 1950s. Using the early work at Bell Labs, AT&T eventually established their Frequency Control Products division, later spun off and known today as Vectron International.[11]

A number of firms started producing quartz crystals for electronic use during this time. Using what are now considered primitive methods, about 100,000 crystal units were produced in the United States during 1939. Through World War II crystals were made from natural quartz crystal, virtually all from Brazil. Shortages of crystals during the war caused by the demand for accurate frequency control of military and naval radios and radars spurred postwar research into culturing synthetic quartz, and by 1950 a hydrothermal process for growing quartz crystals on a commercial scale was developed at Bell Laboratories. By the 1970s virtually all crystals used in electronics were synthetic.

In 1968, Juergen Staudte invented a photolithographic process for manufacturing quartz crystal oscillators while working at North American Aviation (now Rockwell) that allowed them to be made small enough for portable products like watches.[12]

Although crystal oscillators still most commonly use quartz crystals, devices using other materials are becoming more common, such as ceramic resonators.

--
You received this message because you are subscribed to the Google Groups "2top-manitotasy-1" group.
To unsubscribe from this group and stop receiving emails from it, send an email to 2top-manitotasy-1+unsubscribe@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/2top-manitotasy-1/CALML-R3eKDyOCANfwQQSoLOS-7PxinSPfxPAf%3DjwmfvqFLVMVg%40mail.gmail.com.

Comments

Popular posts from this blog

PC Support

* Event publicera och bjud in fler personer

Om du behöver marknadsföring för din webbplats eller produkter